STÉRÉOCHIMIE-LVII' ETUDE STÉRÉOCHIMIQUE ET CINÉTIQUE DE LA BROMATION D'ESTERS ET D'ÉTHERS ÉNOLIQUES STÉROIDIQUES[†]

ALAIN CALVET SISTY 49240 Avrillé France

MARCEL JOZEFOWICZ Département de Chimie, Université de Paris-Nord, 93430 Villetaneuse, France

et

JACQUES LEVISALLES*‡

Laboratoire de Chimie Organique, ERA nº127, Université Pierre et Marie Curie, 75230 Paris Cedex 05, France

(Received in France 12 January 1982)

Abstract—Absolute rates of bromination were measured for two series of derivatives of steroidal ketones 3, enol acetates 1 and enol methyl ether 2. Axial substituents exhibited a large effect on rates, which increased by 15,000 fold on going from $(X = CH_3; Y = CN)$ to (X = Y = H). From the bromide ion effect it was concluded that the first step (formation of an intermediate bromonium ion) was reversible and that the second step (formation of haloketones 4 or 5 or of haloacetals 8 or 9) was slow compared to the first step. The intermediate was concluded to be a highly unsymmetrical bromonium ion rather than a plain oxocarbenium ion.

Resume—On a mesuré les vitesses absolues de bromation de deux séries de dérivés des cétones stéroides 3, les acétates d'énol 1 et les éthers méthyliques d'énol 2. Les substituants axiaux exercent un grand effet sur les vitesses qui augmentent 15,000 fois en passant de (X = CH₃; Y = CN) à (X = Y = H). L'étude de l'effet de l'ion bromure mène à la conclusion que la première étape (formation d'un ion bromonium intermédiaire) est réversible et que la seconde étape (formation des halogénocétones 4 ou 5 ou des halogénacétals 8 ou 9) est lente vis à vis de la première, ce qui s'accorde mieux pour l'intermédiaire avec un ion bromonium très dissymétrique plutôt qu'avec un simple ion oxocarbénium.

L'halogénation des cyclohexanones, effectuée sous régulation cinétique, conduit de façon préférentielle aux α -halogéno-cétones renfermant un atome d'halogène axial. Cette règle énoncée par Corey en 1953² présentait initialement un certains nombre d'exceptions. Ces exceptions ont recu depuis des explications satisfaisantes à la suite des travaux expérimentaux des équipes de Cookson,³ Djerassi^{4.5} et Levisalles.⁶ Ces auteurs ont confirmé le modèle unificateur qui avait été proposé par Valls et Toromanoff⁷ pour les additions sur les dérivés du cyclohexène, et qui peut s'appliquer à la formation des a-halogéno cyclohexanones, à partir des énols ou des esters d'énol des cyclohexanones. Le modèle de Valls et Toromanoff est basé sur l'intervention dans ces additions d'états de transition préchaise et prébateau; normalement l'état de transition préchaise est préféré, à moins que certains substituants situés à moyenne distance de la double liaison C-C de l'énol n'inversent les niveaux énergétiques des deux états de transition possibles. L'action de ces substituants est donc un phénomène d'induction asymétrique qu'il est intéressant d'évaluer aussi quantitativement que possible. Or les travaux mentionnés ci-dessus n'indiquaient que les

pourcentages d' α -halogénocétones épimères. Ces pourcentages permettent de comparer les vitesses relatives d'attaque sur l'une ou l'autre des deux faces (nonéquivalentes) d'une cyclohexanone substituée, mais ne permettent pas de comparer les variations de vitesse provoquées par le remplacement d'un substituant par un autre. Ce deuxième type de comparaison est pourtant le seul réellement significatif pour comprendre l'origine de l'induction asymétrique, mais il a été très rarement abordé⁸ et ne l'a jamais été pour l'halogénation des cétones.

Le présent travail rapporte les résultats d'une étude cinétique sur deux séries de substrats relativement rigides très voisins 1 et 2, qui sont utilisés à la place des cétones correspondantes 3, puisque normalement l'étape déterminante de l'halogénation d'une cétone est une énolisation préalable.⁹ La série g correspond au système sans substituant; la série a correspond au cas de la 5α -cholestanone-3 qui était l'exception notable à la règle de Corey. Afin de vérifier l'influence éventuelle de la chaîne latérale en C-17, la série f a été examinée. Enfin les séries b à e correspondent à des cholestanones substitués en C-5 par des substituants variés, et pour lesquels les travaux antérieurs du laboratoire avaient démontré une grande variété du rapport β/α lors de la bromation (c'est-à-dire du rapport 4/5).

Choix de la méthode expérimentale

L'intérêt fondamental d'une telle étude cinétique est de comparer les vitesses de réaction sur une face donnée de 1 ou de 2 en fonction des substituants X ou Y. En principe l'étude de la compétition entre deux substrats

[†]Ce travail à été présenté au Symposium du 60° anniversaire de Sir Derek Barton (Londres 1978) et est dédié à Sir Derek en témoignage de respect et d'amitié.

[‡]Ce travail, qui constitue une partie de la Thèse de Doctorat ès Sciences Physiques d'Alain CALVET (Paris, 1971), a été effectué en grande partie à la Faculté des Sciences de Nancy de 1968-70.

devrait permettre ces comparaisons. Avec les substrats utilisés ici, elle s'avère délicate parcequ'elle exige pour chaque expérience l'analyse précise d'un mélange pouvant renfermer jusqu'à 8 constituants: les deux substrats 1, les deux cétones 3, et les quatre bromocétones 4 et 5.

Aussi a-t-on préféré, malgré les difficultés prévisibles des mesures cinétiques, évaluer les vitesses absolues d'halogénation des substrats 1 et 2 sur chaque face. L'évaluation de la vitesse absolue comporte deux phases: la mesure cinétique proprement dite et la mesure des pourcentages d'épimères 4 et 5 formés (sous régulation cinétique).

La mesure des pourcentages ne présente pas de difficulté particulière et se fait commodément par dispersion rotatoire.³⁻⁶ En revanche la mesure cinétique est rendue délicate par les valeurs élevées de la vitesse de réaction, même lorsque l'on emploie le brome plutôt que le chlore (plus réactif). La méthode expérimentale de mesure des vitesses de réaction retenue dans la présente étude est l'ampérométrie dans le méthanol, ¹⁰ qui permet la mesure de vitesses assez grandes (k_{exp} de 1-10⁷) dans un solvant déjà abondamment utilisé pour ce type d'étude, notamment par les groupes de Dubois et de Bell¹⁰ (ce qui permet une comparaison avec les résultats de Dubois, Toullec et Barbier).¹²

L'ampérométrie du brome dans le méthanol présente un certain nombre de problèmes qui ont pu être résolus. Le pH ne doit être ni trop acide ni trop basique. Un excès d'acidité risque d'une part de provoquer des épimérisations $(4 \rightarrow 5)$ (ce qui ne gêne pas la cinétique, mais gêne l'évaluation des pourcentages d'épimères formés); d'autre part de provoquer la solvolyse des substrats (1 ou $2 \rightarrow 3$). Par ailleurs un excès d'alcalinité provoque une dismutation du brome dès que le pH est supérieur à 6 (dans MeOH, la neutralité est à pH: 8,35).¹ En pratique l'emploi de tampons Cl₃CCO₂H/Cl₃CCO₂-en présence de sels comme LiClO4 ou NaBr assure des solutions stables de brome pour des pH de 4 environ, ce qui ne provoque ni solvolyse, ni épimérisation. (b) Sur une microélectrode tournante de platine platiné ou de platine poli, on observe un système électrochimique Br₂/Br⁻ qui est rapide. La reproductibilité médiocre des résultats avec le platine platiné a fait préférer la platine poli. (c) L'intensité du courant limite de diffusion du brome à un potentiel de 0.1 V, varie de facon linéaire avec $\sqrt{\omega}$ (ω : vitesse de rotation de l'électrode) et avec la concentration en brome. En présence d'ions Br-, la formation de l'ion complexe Br₃ ne modifie pas le potentiel apparent de réduction, mais modifie la valeur du courant de réduction à cause de la présence de deux espèces Br₂ et Br₃ ayant des constantes de diffusion différentes. Ceci pourrait être gênant au cours de la cinétique, mais en pratique on peut montrer que l'emploi de concentrations de l'ordre de 10^{-4} M en Br₂ et de 10^{-2} - 10^{-1} M en Br⁻ fait varier de façon négligeable (1% environ) le courant de réduction (les erreurs expérimentales systématiques sont supérieures à 1%).

Dans ces conditions l'analyse des courbes temps-intensité du courant limite de diffusion permettent le calcul de la constante de vitesse de réaction.

RÉSULTATS

Stéréochimie et cinétique

Les acétates d'énois employés étaient déjà connus pour la plupart.^{4-6, 14} L'acétoxy-3 androstène-2 1f se prépare sans ambiguité à partir de la cétone correspondante 3f.¹⁵ En revanche la préparation de l'acétoxy-3 estrène-2 1g à partir de la cétone 3g¹⁶ ne peut se faire sans qu'il se forme un peu d'isomère 6,[†] qu'il est difficile d'éliminer complètement. Les valeurs cinétiques indiquées pour 1q sont donc nécessairement entachées d'une erreur faible mais difficile à évaluer.

La bromation des acétates d'énol 1 dans le méthanol en milieu tamponné donne les pourcentages d'épimères 4 et 5 indiqués dans le tableau 1, pourcentages qui sont voisins de ceux qui avaient été observés pour la bromation dans l'acide acétique, en milieu tamponné.^{4-6, 14-16} Le changement de solvant n'influe pas sur la stéréosélectivité de la réaction, alors qu'il influe nettement sur la vitesse absolue.¹⁷ Le Tableau 1 regroupe également les constantes expérimentales k_{exp} de bromation des esters1, ainsi que les constantes k_B et k_{α} , produits de k_{exp} par les pourcentages en épimères β 4 et α 5.

Les éthers méthyliques d'énol 2 utilisés dans ce travail ont été préparés par pyrolyse¹⁸ des acétals 7, eux-mêmes produits par chauffage à reflux dans le méthanol des

⁺L'échantillon utilisé contient environ 25% d'isomère 6 (d'après la RMN du proton). Comme 6 devrait avoir une réactivité comparable à l'isomère 1g, le résultat cinétique, bien qu'incertain, est probablement tres proche de celui que donnerait 1g pur.

Formule du substrat	x	Y	Pourcentage de cétone <u>4</u> produit	k _{exp} globale	et écart type moyen	kg pour la formation de <u>4</u>	k _a pour la formation de <u>5</u>
<u>1a</u>	Me	н	5	71 400	1145	3400	68 000
<u>1</u> ₽	Me	Me	80	2 690	98	2150	540
<u>1</u> 5	Me	CN	64	133	9,2	85	48
<u>1</u> <u>d</u>	Me	F	83	942	37	782	160
<u>1</u> e	Ме	C1	85	606	8,3	515	91
<u>1f</u>	Me	н	*	69 400	5250	3500	65 900
<u>l</u> g	н	н	>95	1.98×10 ⁶	0152×10 ⁶	>1.88x10 ⁶	<100 000

Tableau 1. Constantes expérimentales de vitesse d'attaque β (formation de 4) et d'attaque α (formation de 5) sur les acétates d'énol 1 en mole 1^{-1} mn⁻¹

^{*} Non déterminé mais considéré comme identique au cas de 4a, soit 5%.

Série a: $X = CH_3 Y = H$ b: $X = CH_3 Y = CH_3$ c: $X = CH_3 Y = CN$ d: $X = CH_3 Y = CN$ e: $X = CH_3 Y = F$ e: $X = CH_3 Y = CI$ f: $X = CH_3 Y = H$ g: X = H Y = H

Tableau 2. Constantes expérimentales de vitesse d'attaque β (formation de 8) et d'attaque α (formation de 9) sur les éthers d'énol 2 et comparaison avec les esters d'énol 1

Substrat	Pourcentage d'acétal <u>8</u> produit	k _{exp} globale mole 1 ⁻¹ mn ⁻¹	et écart type moyen	k _g pour la formation de <u>8</u>	k _a pour la formation de <u>9</u>	k _{exp} pour 2 k _{exp} pour 1
<u>2</u> a	5	>10 ⁸		>5x10 ⁶	>95x10 ⁶	>1400
<u>2</u> ⊵	83	31x10 ⁶	8x10 ⁶	26x10 ⁶	5x10 ⁶	11500
<u>2</u> <u></u>	78	5.6x10 ^{\$}	0.14x1C ⁶	4.4x10 ⁶	1.2x10 ⁶	42000

cétones 3, en présence d'acide toluène-p sulfonique. La pyrolyse des acétals 7d et 7e ne conduit pas aux éthers 2d et 2e en raison d'une élimination concomitante de HX (X = F, CI).

Leur bromation *ne donne pas* les bromocétones 4 et 5 contrairement à ce qui se passe lorsque l'on opère dans le diéthyl-éther ou le tétrachlorure de carbone.¹⁹ On obtient ici les bromoacétals 8 et 9, dont on peut analyser le mélange brut par RMN du proton (voir partie expérimentale). On notera le bon accord entre les résultats stéréochimiques de la bromation des esters (Tableau 1) et des éthers d'énols (tableau 2) pour les séries **a** et **b** et l'accord médiocre pour la série c.

On peut également noter la plus grande réactivité, attendue des éthers 2 par comparaison aux esters 1, et l'affaiblissement désormais classique^{12,20} de l'effet des substituants Me et CN lorsque croît la réactivité des substrats (cf tableau 2).

D'une façon générale les valeurs trouvées sont un peu plus faibles que celles qui sont données pour des composés analogues dans des conditions comparables par Dubois et collaborateurs.^{12,21}

Effet de la température. L'effet de la température a été examiné, comme le montre le Tableau 3, qui donne également des paramètres d'activation pour l'ester 2a. Ces valeurs sont très proches des valeurs trouvées par Walisch et Dubois²⁰ pour le cyclohexène (8.6 kcal mol⁻¹ et -16.4 u.e. respectivement).

Effet de la concentration en ion bromure. L'intervention inévitable de l'ion Br^{-22} dans la bromation

Température	^k exp	écart type moyen	∆н≯	∆s *
25° 35.5° 43.8°	71 400 118 600 171 700	1 145 6 360 4 000	8.10 [±] 0.47 kcal/mole	-14.7 ⁺ 1,6 u.e.

Tableau 3. Constantes k_{exp} pour l'acétoxycholestène 1a à différentes températures et paramètres d'activation

polaire des alcènes rend nécessaire la prise en considération de l'équilibre (1):-

$$Br_2 + Br \rightleftharpoons Br_3$$
 (1)

La constante K de cet équilibre a normalement la valeur de 177 à 25°.²³ On a vérifié dans le présent travail que l'on retrouve bien cette valeur en mesurant la vitesse de bromation du cholestène-2 10 à trois concentrations différentes en ion bromure (Tableau 4). On a vérifié également que la constante apparente de vitesse k_{exp} variait bien selon la relation (2)

$$\mathbf{k}_{exp} = \frac{\alpha + \beta(Br^{-})}{1 + K(Br^{-})} \tag{2}$$

avec K = 177, $\alpha = k_1$ et $\beta = Kk_2$, où k_1 et k_2 sont respectivement les vitesses de réaction du cholestène avec Br₂ et Br₃⁻. On trouve ici $k_1 = 36,900$ et $k_2 = 439$. La Fig. 1 montre la variation linéaire observée de $k_{exp}(1 + K[Br])$ avec [Br⁻] qu'exige la formule (2). Il convient de noter que cette variation implique, que la deuxième étape de la bromation polaire (transformation de l'ion bromonium intermédiaire en produits) soit très rapide vis à vis du retour au substrat et aux réactifs (Br₂ et Br₃⁻). Cette condition est en général réalisée avec les alcènes simples, comme le cholestène-2 10.

En revanche cette condition n'est pas du tout réalisée dans le cas de l'acétoxy-3-cholestène-2 1a, comme le montre le Tableau 4. On observe alors que k_{exp} varie avec [Br] selon la formule (3).

$$k_{exp} = \frac{a(Br^{-})^2 + b(Br^{-}) + c}{(1 + K[Br^{-}])(1 + d[Br^{-}])}$$

La Fig. 2 donne les points expérimentaux et la courbe résultant d'un calcul sur ordinateur à partir des données expérimentales. La justification de la formule (3) est donnée en annexe: elle montre que contrairement à ce qui se passe avec le cholestène-2 10, la transformation de l'ion intermédiaire I[⊕] en produits n'est pas rapide vis à vis du retour au substrat et aux réactifs. La nature de l'ion intermédiaire I[⊕] est discutée ultérieurement dans le mémoire.

DISCUSSION

La bromation des cyclohexanones a fait l'objet de deux propositions mécanistiques.

La première due à Corey² considère que la réaction de l'énol, intermédiaire obligé, avec l'halogène est une réac-

Tableau 4. Effet de la concentration en ion bromure sur la constante apparente keap de vitesse de bromation

(Br ^G) ×10 ⁻² M	en mole 1 ⁻¹ mn ⁻¹	$k_{exp} (1 + K[Br])$						
cholestène-2 10	2							
2	8450±100	38 360						
4.75	4320 [±] 120	40 650						
10	2390 [±] 50	44 500						
Acétoxy-3 chole	stène-2 <u>la</u>							
1	21930 [±] 1120	60750 [±] 3100						
2	13060 [±] 370	59300 [±] 1700						
3.5	6840 [±] 150	49200 [±] 1100						
5	4760 [±] 100	46900 [±] 1000						
7,5	3520 [±] 100	50350 [±] 1450						
10	2730 [±] 120	51050 [±] 2256						
12.5	2100 [±] 35	48500 [±] 800						
15,0	1660 [±] 20	45650 [±] 550						
20.0	1440 [±] 30	52400 [±] 1100						

Fig. 1. Variation de $k_{exp}(1 + KBr^{-})$ pour le 5 α -cholestène-2 avec la concentration en ion bromure (K = 177); trait plein: courbe calculée; \bigcirc : points expérimentaux.

tion synchrone, conduisant directement à l'halogénocétone axiale pour des raisons stéréoélectroniques (4).

état de transition

Intervention d'un ion intermédiaire

La présente étude montre que, en dépit de la formation directe des bromocétones 4 et 5 à partir des acétates d'énol 1, la réaction comporte nécessairement un ion intermédiaire I^{\oplus} , pour la formation de chaque épimère 4 ou 5. La formule (3) est compatible avec le schéma (6). Ce schéma met en évidence la réversibilité de la form-

n

Fig. 2. Variation de k_{exp} pour l'acétoxy-3 5α -cholestère - 2 avec la concentration en ion bromure; trait plein: courbe calculée; \bigcirc : points expérimentaux.

ation de l'intermédiaire I^{\oplus} , formation qui doit donc être régulée thermodynamiquement.

(a)
$$1 + Br_2 \underset{k=1}{\overset{k_1}{\rightleftharpoons}} Br^{\ominus} + I^{\oplus}$$

(b) $1 + Br_3^{\ominus} \underset{k=2}{\overset{k_2}{\rightthreetimes}} 2Br^{\ominus} + I^{\oplus}$
(c) $I^{\oplus} + MeOH \xrightarrow{k_3} 4 \text{ ou } 5 + AcOMe + H^{\oplus}$
(d) $I^{\oplus} + Br^{\ominus} \underset{k=4}{\overset{k_4}{\to}} \text{ ou } 5 + AcBr.$
(6)

Ce schéma, tout à fait général se simplifie si k - 1 + k - 2 (Br⁻) est beaucoup plus petit que $k_3 + k_4$ (Br⁻); on retombe alors sur la formule (2) qui s'applique au cholestène 10, pour lequel l'effet de l'ion bromure ne permet pas de déceler cinétiquement l'existence d'un intermédiaire. En revanche pour l'acétate d'énol 1a on ne se trouve pas dans cette condition limite et l'intervention de l'intermédiaire I[®] est aisément décelable cinétiquement.

L'existence de l'intermédiaire I[⊕] pour la réaction des éthers d'énol 2 n'a pas été démontré cinétiquement dans le présent travail mais est géneralement admise.³⁶ La similitude des résultats stéréochimiques observée pour les composés 1 (Tableau 1) et les composés 2 (Tableau 2) suggère que la formation de I[⊕] doit aussi être réversible dans la réaction des éthers d'énol 2. C'est la différence des résultats stéréochimiques entre la bromation de l'éther méthylique d'énol d'une part, et celle de l'énol et des énolates métalliques d'autre part, du t-butyl-4 benzoyl-1 cyclohexane, qui a conduit Bettahar et Charpentier-Morize³⁴ à proposer un mécanisme spécial pour la bromation de l'énol et des énolates métalliques. A contrario la similitude des résultats stéréochimiques pour 1 et 2 suggère un mécanisme similaire.

A vrai dire la déshalogénation des cétones halogénées en milieu acide est un phénomène bien connu et implique que la formation de l'intermédiaire I[®] est réversible dans le cas des énols.³⁷ Si cette formation est réversible dans le cas des énols et des acétates d'énols, il paraît raisonnable d'ad-

[†]Les schémas (7) et (8) sont écrits avec un ion bromonium 12, mais pourraient s'écrire aussi bien avec un ion acétyloxonium 11. Un rapporteur a fait remarquer que l'on doit obtenir de l'acétate de méthyle. Toutefois les conditions expérimentales, mêmes les plus favorables (20 mg d'acétate de méthyle dans 100 ml de méthanol en présence de 60 mg d'acide acétique), rendent une telle mise en évidence extrêmement difficile.

mettre qu'elle l'est aussi pour les éthers d'énols. Dans le méthanol, le mode d'évolution de l'ion I^{\oplus} paraît être normalement la fixation du nucléophile le plus abondant (MeOH) pour conduire aux acétals bromés 8 et 9. On ne peut en effet concevoir d'autre mécanisme raisonnable d'évolution, à part le retour au substrat 2.

En revanche, pour les ions I^{\oplus} dérivant des acétates d'énol, on n'obtient pas les acétals mixtes 11 (Z = Br, OMe) provenant d'une évolution analogue. Les nucléophiles Z^{\odot} ou ZH du milieu attaquent le groupe OCOCH₃ pour conduire à la bromo cétone directement.

Deux modes d'attaque sont concevables, sans qu'il soit ici possible de les départager, bien que le premier soit plus plausible:† (1) l'attaque sur le groupe carbonyle (7)

(2) l'attaque sur un proton du groupe méthyle (8)

$$Z^{\ominus} + H - CH_2 - COOC - CH - |$$

$$\rightarrow ZH + CH_2 = CO + O = C - CH - (8)$$

Dans l'un ou l'autre cas, la vitesse de cette étape ne devrait pas être beaucoup influencée par les substituants X et Y.

Influence des substituants

La comparaison dans les Tableaux 1 et 5 des données cinétiques et énergétiques pour les séries du cholestane **a** et de l'androstane f montre que, dans les limites des erreurs expérimentales la présence ou l'absence de chaîne latérale C_8H_{17} n'a aucune influence sur la réaction de bromation, comme on pouvait diailleurs s'y attendre.

L'effet que provoque un substituent Y accepteur inductif en C-5 α sur la vitesse d'attaque de l'halogène par la face β (pour laquelle aucun encombrement n'intervient) suit assez bien une corrélation de Hammett³⁵ avec $\rho = -2.16$, en employant σ_m pour H, CN, F et Cl (séries **a**, **c**, **d** et e) (Fig. 3). Si l'on tient compte de l'éloignement du point d'attache de Y vis-à-vis du centre réactionnel, une telle valeur de ρ est satisfaisante.

L'effet des mêmes substituants sur la vitesse d'attaque par la face α est évidemment beaucoup plus marqué. L'encombrement (sphère de van der Waals, effet de champ) ajoute au surcroît d'énergie d'activation dû à l'effet inductif, un surcroît supplémentaire de 2.1-2.8 kcal/mole (Tableau 5, avant dernière colonne), avec un ordre CN < F-Cl, qui paraît acceptable compte tenu des erreurs expérimentales.

On notera l'effet ralentisseur du groupe méthyle pour la bromation sur la face opposée (Tableau 1): attaque β dans la sériedu méthyl- 5α cholestane 1b (k(1b)/k(1a) = 0.63), attaque α dans la serie de l'estrane 1g (k(1f)/k(1g) = 0.66). On note dans les deux cas une augmentation de ΔG^*

Fig. 3. Variation de $\log \frac{k}{k_0}$ avec la constante méta de Hammett pour les esters d'énol 1a à 1e (k₀ = k pour 1a; k = k pour 1b à 1e).

de 0.25 kcal/mole environ (Tableau 5). La similitude des deux valeurs peut être fortuite, mais dans l'un ou l'autre cas, les erreurs expérimentales ne sauraient être mises en cause. Le groupe méthyle dans les deux cas se comporte comme acceptuer inductif, ce qui est opposé à son rôle habituel, surtout en milieu condensé.²⁷

Nature de l'intermédiaire I[⊕]

Jusqu'à ce point la discussion a pu être menée sans référence à la nature de l'intermédiaire I^{\oplus} . Deux structures sont imaginables: (a) l'ion oxonium 12; (b) l'ion bromonium 13. On notera immédiatement que ces deux structures peuvent en fait constituer des formules limites d'un ion mésomère et que la question qui se pose est de savoir si l'ion mésomère ressemble davantage à l'une ou l'autre des formules limites. Si l'on admet (comme cela a été indiqué plus haut) que la dernière étape (attaque nucléophile sur l'intermédiaire I^{\oplus}) se fait à peu près avec la même vitesse pour tous les exemples étudiés, les valeurs ΔG^* doivent refléter assez exactement les valeurs de ΔG° pour les équilibres (9).

$$1 (ou 2) + Br_2 \neq 12 (ou 13) + Br^{\ominus}$$
 (9)

Il est possible de distinguer entre les ions 12 et 13 en examinant les valeurs de ΔG^* . (a) Un ion oxonium tel que 12 expliquerait aisément la formation des acétals 8 et 9 à partir des éthers d'énols 2. Mais, puisque cet ion 12 est en équilibre avec les substrats 1 ou 2 (6), on devrait observer la série d'équilibres (10):

$$Br^{\ominus} + 16 \rightleftharpoons Br_2 + 1 \rightleftharpoons Br^{\ominus} + 17 \measuredangle Br^{\ominus} + 18 \qquad (10)$$

⁺Les pourcentages ici calculés proviennent des valeurs de l'interaction de 1-3 syn diaxiale méthyle-brome calculée par Lambert et al.²⁸ et de la valeur A du brome dans les bromocyclohexanone.²⁹ où 16 et 17 sont les conformations primaires des intermédiaires et 18 la conformation secondaire (définitive) de 17. On attendrait alors 100% de bromocétone équatoriale 5a [(18)/(16 = 10⁵)], ce qui n'est pas le cas (5a/(4a) = (95/5)], et 40% de bromocétone équatoriale 5g, ce qui n'est pas le cas non plus [(5g)/(4g) = 5/95].[‡] La prise en considération d'ions oxonoium "purs" tels que 12 n'est donc pas possible.

(b) Le passage d'un ion énolique à un ion bromonium change relativement peu la géométrie du cycle à 6 chaînons, quel que soit le côté par lequel arrive l'atome de brome. Comme la réaction de formation de l'ion bromonium est réversible, les proportions de cétones 4 et 5 devraient être essentiellement gouvernées par l'équilibre des opms 14s et 15s. L'examen du Tableau 5 (dernière colonne) montre que les valeurs de $\Delta G_{B-\alpha}^*$ (qui reflètent des valeurs de ΔG° entre ions 14 et 15) sont bien compatibles avec des équilibres entre ions bromonium diastéréoisomères d'encombrements relativement proches.

L'examen des formules 14s et 15s montre que, à cause de la symétrie, l'atome de Br et le substituant X sont à la même distance dans 14s que l'atome de Br et le substituant Y dans 15s.[‡] Cela a pour conséquence que le remplacement de H par CH3, pour X comme pour Y, doit provoquer une même variation de ΔG° , donc ΔG^{*} , dans la formation de 14s et de 15s. Or on observe pour 14 (passage de la série g à la série (a) que $\Delta\Delta G^*\beta >$ 3.75 kcal/mole et pour 15 (passage de la série a à la série (b) que $\Delta\Delta G_{\alpha}^{*} = 2.86 \text{ kcal/mol}^{-1}$ (Tableau 5). Les deux valeurs diffèrent de près de 1 kcal/mol⁻¹, ce qui est bien au delà des erreurs expérimentales cumulées. Il faut donc admettre qu'il est moins gênant de remplacer un atome d'hydrogène par un groupe CH₃ dans 15 que dans 14. Un tel résultat est incompatible avec les formules symétriques 14s et 15s, mais compatible avec les formules dissymétriques 14d et 15d. Dans les formules 14d et 15d la dissymétrie provient de l'allongement de la

liaison la plus faible AcOC - Br - et se retrouve prob-

ablement dans les ions 13 dérivés des éthers d'énol.

Si l'on compare en effet les valeurs de ΔG^* , qui peuvent être comparées dans la série des esters 1 et dans celle des éthers d'énol 2 (séries **b** et c), on note les différences suivantes (en kcal.mol⁻¹):

$$\begin{split} \Delta_{\boldsymbol{\beta}}^{1} &= \Delta G^{*}{}_{\boldsymbol{\beta}}(\mathbf{1c}) - \Delta G^{*}{}_{\boldsymbol{\beta}}(\mathbf{1b}) = 1.91 \pm 0.16 \\ \Delta_{\boldsymbol{\alpha}}^{1} &= \Delta G^{*}{}_{\boldsymbol{\alpha}}(\mathbf{1c}) - \Delta G^{*}{}^{\boldsymbol{\alpha}}(\mathbf{1b}) = 1.44 \pm 0.16 \\ \Delta_{\boldsymbol{\beta}}^{2} &= \Delta G^{*}{}_{\boldsymbol{\beta}}(\mathbf{2c}) - \Delta G^{*}{}_{\boldsymbol{\beta}}(\mathbf{2b}) = 1.05 \pm 0.29 \\ \Delta_{\boldsymbol{\alpha}}^{2} &= \Delta G^{*}{}_{\boldsymbol{\alpha}}(\mathbf{2c}) - \Delta G^{*}{}_{\boldsymbol{\alpha}}(\mathbf{2b}) = 0.84 \pm 0.29. \end{split}$$

L'effet des substituants Y sur l'attaque β peut être considéré comme purement électronique dans le cas des esters d'énol 1c et 1b (Δ_{β} ' = 1.91). Cet effet est diminué dans le cas de l'attaque α , car le groupe CH₃ plus encombrant ralentit davantage par encombrement stérique la réaction que le groupe CN, d'où une différences suivantes (en kcal.mol '):

Dans le cas des éthers d'énol, cet effet électronique est en partie gommé par l'effet électronique plus fort du groupe OCH₃, ce qui est visible dans la valeur $\Delta_{\beta}^2 = 1.05$. Si la dissymétrie des ions **14d** et **15d** étaient la même pour les ions provenant des esters 1 et des éthers 2, on attendrait une valeur de $\Delta_{\alpha}^2 = 0.69$. On observe 0.84, ce

[‡]Ces distances sont évaluées, sur un modèle de Dreiding non déformé, à 3.2 Å au minimum, ce qui correspond probablement à une interaction relativement faibles: la somme des rayons de van der Waals³⁰ qui est de 3.95 Å, est probablement plus faible en réalité, car la liaison carbone-carbone n'a pas une symétrie sphérique et pointe l'atome de brome loin du groupe méthyle. Dans le cas des terpènes bicycliques, la distance entre deux groupes méthyles syn diaxiaux sur le cycle A est de 3.3 Å,³¹ alors que la somme des rayons de van der Waals est de 4 Å.

				differ	ences (en Kcal/mole			
Formule du substrat	×	ĸ	۵G ^م *	∀ g 9	ΔΔG * (a)	∆∆G (b) β	∆∆∆G * (c)	ΔG
<u>1</u> ª	Me	н	12.52±0.04	14.30±0.04				+1.78±0.08
di #	βe	Me	15.38±0,08	14.57±0.08	2,86±0.12	0.27±0.12	2.59±0,24	-0.81±0.16
<u>l</u> c	Me	CN	16.82±0.08	16.48±0.08	4.30±0.12	2.18±0.12	2,12±0.24	-0.34±0,16
₽¶ ¶	Me	Ēų	16.10±0.06	15,16±0,06	3.58±0,10	0.86±0.10	2,72±0.20	-0 .94±0 ,12
₽ E	Me	IJ	16,45±0.06	15.41±0.06	3.93±0.10	1.11±0.10	2.82±0.20	-1.04±0.12
Ξ£	Me	H	12.54±0.04	14.28±0,04	0,02±0.10	0 , 02±0 , 08	0,04±0.20	+1,74±0,08
<u>1</u> 4	н	н	>12.29±0.05	<10.55±0,05	>-0.23±0.09	<-3.75±0.09	<-3.52±0.18	<-1.74±0.10
<u>3</u> ₽	Me	ж	9.98±0,23	9,00±0,23				-0 . 98±0 . 46
<u>2c</u>	Me	CN	10.82±0.06	10,05±0.06		-		-0,77±C,12
	(a)	ΔΔG.	= ΔG_{α} (pour	<u>1</u> <u></u>	- ¬G	(pour <u>ja</u>)		
	(q)	۵۵G ₈	= ΔG_{β}^{*} (pour	<u>l</u> b, <u>l</u> ç etc) - ⁴ G ⁶	(pour la)		
	(c)	ΔΔΔG		ن۵G *	L .			
	(P)	∆G ₈₋₀	$x = \Delta G_{\beta} = \Delta G$	*				

Tableau 5. Enthalpies libres d'activation pour les attaques α et β sur les acétates d'énol 1 et éthers d'énols 2 et différences (an K allonde)

I8 ⊕

qui peut s'expliquer par le fait que, les ions 15d étaient plus dissymétriques quand S=CH₃, l'influence de l'encombrement de Y diminue de 0.46 kcal/mol⁻¹ dans les ions 15d (S=COCH₃) à 0.21 kcal/mol⁻¹ dans les ions 15d (S=CH₃), car la distance Y...Br augmmente.

Bien que ces derniers calculs résultent de différence de différences, et que le poids des erreurs expérimentales les rendent moins fiables, ils vont dans une direction acceptable. Dubois et son équipe³⁶ ont en effet souligné le caractère d'ion oxocarbenium (ou oxonium) (c'est à dire 12) des états de transition lors de la bromation des dérivés d'énol. Le présent travail ne confirme pas entièrement cette façon de voir: il semble qu'il existe une évolution progressive des intermédiaires, donc des états de transition, de puis les ions bromonium symétriques 13 (cas des alcènes) aux ions bromonium très dissymétriques (cas des éthers d'énol), lesquels ont certainement un caractère marqué d'ions oxocarbenium, sans être pour autant de purs ions oxocarbenium ou oxonium tels que 12 (vide supra). L'existence d'intermédiaires, dans le cas des énols et des énolates métalliques, paraît exclue d'après les résultats de Bettahar et Charpentier Morize³⁴ qui proposent un mécanisme péricyclique.

CONCLUSION

Le présent travail a mis en évidence:

(1) L'effet important de substituants situés à moyenne distance sur la vitesse de réaction du brome sur les esters et éthers d'énol.

(2) Le caractère réversible de la formation de l'inter-

médiaire I^{\oplus} lors de l'halogénation des esters et éthers d'énol.

(3) La nature cyclique dissymétrique de cet intermédiaire, qui est en accord avec la stéréochimie de la réaction, et avec la proposition de Barton et Cookson²⁴ plutôt qu'avec celle de Corey.²

PARTIE EXPERIMENTALE

Le mode usuel d'isolement des composés et la présentation des résultats spectroscopiques sont décrits dans réf. 33. Les microanalyses ont été effectuées par le Service Centrale de Microanalyse du CNRS et le Service de Microanalyse de l'Université Pierre et Marie Curie.

Préparation et caractérisation des substrats et des produits Acétates d'énol 1. La cétone 3 (120 mg) est chauffée à reflux 1 h avec l'acétate d'isopropényle contenant 1 goutte de H₂SO₄; le produit brut, isolé de la façon habituelle est chromatographié sur gel de silice (10 g) et est recristallisé dans le mélange étherméthanol. On obtient ainsi l'acétoxy-3 (5 α) cholestène-2 1a, $F = 90 - 91^{\circ}C; \ \alpha_{[D]} = +55^{\circ} (c = 0.10)$ $(litt³² F = 90^{\circ}C; \ \alpha_{[D]} = +57^{\circ});$ l'acétoxy-3 méthyl-5a cholestène-2 1b $F = 96^{\circ}c; \alpha_{(D)} = +40^{\circ} (c = 0.15)$ (litt.⁶: $F = 96 - 97^{\circ}C$; $\alpha_{(D)} = +42.5^{\circ}$) l'acétoxy-3 cyano - 5a cholestène-2 1c $F = 178^{\circ}c; \alpha_{D} = +48^{\circ} (c = 0.3)$ (litt.^{14a}: F = 179°c; $\alpha_{[D]} = +46°$) l'acétoxy-3 fluoro-5a cholestène-2 1d $F = 143^{\circ}c; \ \alpha_{[D]} = +40^{\circ} (c = 0.4)$ (litt.^{14b}: F = 144°c; $\alpha_{(D)} = +42^\circ$) l'acétoxy-3 chloro-5a cholestène-2 le $F = 142^{\circ}c; \ \alpha_{[D]} = +36^{\circ}(c = 0.3)$ (litt.⁶: F = 141 - 142°c; \ \alpha_{[D]} = +38^{\circ}). l'acétoxy-3 (5a) androstène-2 1f. $F = 100 - 102^{\circ}c$, calc. C, 79.69; H, 10.19; tr C, 79.41; H, 10.09%. RMN 3H à 0.7(s): 3H à 0.82(s); 3H à 2.0(s); 1H à 5.2(m; W_2^1 11Hz). l'acétoxy-3 (5 α) estrène-2 1g et l'acétoxy-3 (5 α) estrène-3 6g, $F = 67^{\circ}c$, calc. C, 79.41; H, 9.99; tr C, 79.35; H, 10.07%. RMN 3H à 0.7(s); 3H à 2.0(s); 0.25H à 5.05(s élargi W¹₂4 Hz); 0.75H à 5.24(m, W^I₂ 12Hz).

Ethers méthyliques 2

La cétone 2 (2g) est chauffée à reflux 1h avec TsOH (100 mg) dans MeOH (50 ml) (contrôle par CCM analytique). Après neutralisation par MeONa on chromatographie sur gel de silice et recristallise dans le méthanol l'acétal 7. L'acétal est ensuite pyrolysé sous vide (chauffage par la vapeur de napthtalène; environ 210°c). Après chromatographie sur alumine basique on recristallise dans le méthanol d'éther d'énol 2. On obtient ainsi le méthoxy-3 (5a) cholestène-2 2a $F = 95^{\circ}c; \ \alpha_{[D]} = +66^{\circ} (c = 0.3);$ (litt¹⁸ F = 95 - 97°c; $\alpha_{[D]} = +89°$; litt^{18b} F = $100 - 101^{\circ}$ c; $\alpha_{\text{[D]}} = + 61^{\circ}$). le méthoxy-3 méthyl-5a cholestène-2 2b $F = 119^{\circ}c$, calc. C 83.89; H, 12.15; tr C, 83.03; H, 12.20%. IR 1675, 1205 et 1175 cm. le méthoxy-3 cyano-5a cholestène-3 2c. $F = 120^{\circ}c; \ \alpha_{(D)} = +42^{\circ} \ (c = 0.3);$ Calc. C, 81.82; H, 11.13; N, 3.29; tr, C, 83.02; H, 11.16; N, 3.26%. IR 3030, 2235, 1675, 1215 et 1175 cm⁻¹.

Bromation des acétates d'énol 1

A une solution de l'acétate d'énol 1 (100 mg) dans le méthanol (100 ml) tamponné par le tampon acide acétique-acétate $(10^{-2}$ N) on ajoute du brome (40 mg). La décoloration est rapide. Après isolement de la façon habituelle on examine le produit brut en dispersion rotatoire ou en dichrofsme circulaire et observe les pourcentages d'isomère indiqués dans le Tableau 1. A partir de 1a, DR (c = 0.27): ϕ_{400} : +425°; ϕ_{320} : +1270° (max) ϕ_{270} : -1260° (min); ϕ_{255} : -1050 (fin de courbe).

DC (c = 0.32): 0(380); + 2.81(309) maxi ($W_2^{1}50$);

+ 0.78 (280) fin de courbe.

A partir de 1d,

DC: 0(380); + 3.68(309) maxi ($w_2^{1}47$); 0(265).

A partir de 1e,

DR (c = 0.2): ϕ_{600} : + 400°; ϕ_{400} = + 1750°; $(\phi)_{338}$ = + 5700°

(maxi); $\phi_{300} = -400^{\circ}$ (fin de courbe).

A partir de 1g et 6g

DC: 0.49(310) max (W255).

Bromation des éthers d'énol 2

On opère comme pour les acétates d'énol 1. On isole ensuite de la façon habituelle et examine le produit brut en RMN du proton. A partir de 2a,

RMN (8a) 0.15Hà 3.12(s). 0.15H à 3.15(s). (9a)2.85H à 3.32 (s); 2.85H à 3.35(s); 0.59H à 4.10 (d de d $J_1 = 12$ Hz; $J_2 = 5$ Hz). Bromo-2a diméthoxy-3,3 (5a) cholestane 9a, est obtenu par recristallisation du produit brut précédent $F = 137^{\circ}c$ (litt¹⁹⁶ F = 135 - 137°); RMN: 1H à 4.10 $(J_1 = 12Hz; J_2 = 5Hz)$. A partir de 2b, RMN (8b) 4.98H à 3.17s. élargi (W22.5) (9b) 1.02H à 3.35s. élargi (W¹₂2.5); (9b) 0.17H à 4.10 (masqué par le massif à 4.30) (8b) 0.83H à 4.30 (m; W¹₂ 9Hz). A partir de 2c: 2.34H à 3.22, (8c) 2.34H à 3.28. (9c) 0.66H à 3.35 0.66H à 3.43, 0.22H à 4.15 (masqué par le massif à 4.30); (8c) 0.78H à 4.30 (m; $W_2^1 = 9Hz$).

Mesures cinétiques

Le montage utilisé est un montage voltampérométrique chimique à trois électrodes. La cellule de mesure est une cellule à jaquette thermostatique RM 05 Tacussel. L'électrode de référence est une électrode au calomel MeOH C 10 Tacussel, l'électrode auxiliaire une électrode de platine Pt 11 Tacussel, L'électrode de mesure une électrode à section de fil de platine poli; elle est fabriquée au laboratoire. Le potentiel fixe est imposé au moyen d'un potentiostat PRT 20 2Z Tacussel. L'enregistreur utilisé est un GRSO de la Société SEFRAM ("Graphispot").

On prépare une solution du composé insaturé étudié dans le méthanol, son titre est déterminé par pesée. On prépare une solution de brome dans le milieu réactionnel (MeOH, sel de fond, tampon trichloracétique); son titre est déterminé par iodométrie.

La solution de brome (environ 10^{-4} M) est placée dans la cellule de mesure. L'électrode indique l'intensité qui, après correction de volume sera l'intensité initiale. La solution du composé insaturé est introduite de deux manières différentes suivant la vitesse de la réaction soit au moyen d'une seringue pour les réactions rapides (le temps de mélange est alors réduit au minimum) soit au moyen d'une ampoule à brome munie d'une jaquette thermostatique et d'un robinet à large voie pour les réactions lentes. Le milieu réactionnel est agité pendant un bref instant après l'introduction du substrat. L'enregistrement de la hauteur du palier de réduction du brome permet de connaître sa concentration et de calculer la constante de vitesse. La réaction est d'ordre deux, un par rapport au substrat et un par rapport au brome.

	TABLES A-D	
k _{exp} en 1 mole ⁻¹	mn ⁻¹ pour les a	cétates d'énol 🛓
是	يعلر	吳
71400	129,7	617
75200	141.6	596
70600	102.6	565
68200	159	626
70200	131.4	599
77500	moyenne 133	629
65700	·	610
69300	<u>1</u> ₫	moyenne 606
68600	976	<u>}</u>
77500	978	<u>]</u>
moyenne 71400	1037	66200
1b,	901	68300
2280	819	62400
2230	moyenne 942	78000
2470		72200
2390		moyenne 69400
2770		
2900		<u>1</u> g
moyenne 2690		1.80.10
	,I	1.81.10
		2.10 =10
		2.18+10
		2.00.10
		moyenne 1.98x10 ⁶

 k_{exp} en l-mole⁻¹ mn⁻¹ pour les éthers d'énol λ

24	與	35
La réactivité de ce compo- sé est trop élevée pour que la constante de vitesse soit accessible par la mé- thode employée. L'examen des courbes obtenues indique	$\begin{array}{r} 35.3 \times 10^{6} \\ 53.0 \times 10^{6} \\ 42.0 \times 10^{6} \\ 16.3 \times 10^{6} \\ 9.1 \times 10^{6} \end{array}$	5.68 x 10 ⁶ 5.17 x 10 ⁶ 4.97 x 10 ⁶ 5.77 x 10 ⁶ 6.00 x 10 ⁶
que cette constante est pro- bablement supérieure à 10 ⁶ 1/mole min.	moyenne 31x10	moyenne 5,58x10 ⁶

Variation de k	exp pour	a avec 1	a température
----------------	----------	----------	---------------

156 000 163 500 190 000 172 000
163 500 190 000 172 000
190 000 172 000
172 000
184 000
158 500
184 500
165 000
171 500
155 000
189 000

113

Variations de k _{exp} (en l-mole ⁻¹ mn ⁻¹) pour 13 avec la concentra- tion en ion bromure (tampon trichloroacétique 10 ⁻² M)	NaBr x10 ⁻² M NaBr 3,5×10 ⁻² M ¹ NaBr 10 ⁻¹ M Liclo ₄ 9×10 ⁻² M Liclo ₄ 6,5×10 ⁻² M	22250 6490 2270	25250 6820 2380	24650 6300 2240	22880 6890 2180 17480 7720 3250	22700 6310 2730	moyenne 21930 7550 3060	NARY 2VIO ⁻² M 5650 3170 29000	LICIO_ 8X10 ⁻² M		13300 NaBr 5x10 ⁻² M moyenne 2730 -2	12900 LICIO ₄ 5×10 ^{-M} NaBr 1,25×10 ⁻¹ M	3720 3720 2180 1955	14100 4100 2130 1995	12250 48/0 2085 2230	12350 5600 2050 2240	moyenne 13060 13080 2080	noyenne 2100	moyenne 4760 NaBr 1,5x10 ⁻¹ M	NaBr 7.5×10 ⁻² M 1650 1680	Liclo4 2.5x10 ⁻² M 1583 1699	3370 1664 1687	3350 1610 1758	3650 moyenne 1660	3970 NaBr 2x10 ⁻¹ M	3410 1507 1365	moyenne 3520	150 1450
le (5a) cholestène-2 (tampon trichloro-	NaBr 10 ⁻¹ M		2430	2470	2230	2190	2470	2570	2440	2310	moyenne 2390																	
en 1 mole ⁻¹ mn ⁻¹ pour) ration en ion bromure	NaBr :4.75x10 ⁻² M	W DIVEZ-C:POTOT	4930	4680	4210	4200	4290	3860	4280	3850	4360	moyenne 4320					_											
Variation de k _{exp} (<u>10</u> avec la concentu -2	acétique 10 ^M) NaBr :2x10 ⁻² M	W DIX0: POTTO	7950	8520	8170	8760	8630	8100	8680	8680	8550	8080	0006	8530	0460		-											

114

ALAIN CALVET et al.

moyenne 1440

Sauf indication contraire, les bromations sont effectuées dans le méthanol contenant du perchlorate de lithium en concentration décimolaire et du tampon trichloracétique en concentration centimolaire. La température du milieu est maintenant à 25+0.1° sauf évidemment dans les cas où sont recherchés les paramètres thermodynamiques dans la réaction. Pour chaque produit, sont indiquées les diverses valeurs obtenues au cours de diverses expériences et la moyenne de ces valeurs.

BIBLIOGRAPHIE

- ¹C. Agami, M. Fadlallah, C. Puchot et T. Rizk, Tetrahedron 38, 267 (1982).
- ²E. J. Corey, Experientia 9, 329 (1953); J. Am. Chem. Soc. 75, 2301 (1953).
- ³C. Djerassi, N. Finch, R. C. Cookson et C. W. Bird, J. Am. Chem. Soc. 82, 5488 (1960).
- ⁴R. Villotti, H. J. Ringold et C. Djerassi, J. Am. Chem. Soc. 82, 5693 (1960).
- ⁵C. Djerassi, N. Finch et R. Mauli, J. Am. Chem. Soc. 81, 4997
- (1959); R. Mauli, H. J. Ringold et C. Djerassi, Ibid 82, 5494 (1960); C. Djerassi et T. Nakano, Chem. and Ind. 1385 (1960).
- ⁶J. C. Jacquesy et J. Levisalles, Bull. Soc. Chim. France. 1866 (1962) et articles ultérieurs.
- J. Valls et E. Toromanoff, Bull. Soc. Chim. France 758 (1961).
- ⁸Voir par exemple H. B. Henbest, Proc. Chem. Soc. p. 159
- (1963). ⁹C. K. Ingold et C. L. Wilson, J. Chem. Soc. 773 (1934); P. D.
- ¹⁰R. P. Bell et T. Spencer, J. Chem. Soc. 1157 (1959).
- ¹¹P. Alcais et J. E. Dubois, J. Chim. Phys. 65, 1800 (1968); J. E. Dubois et G. Barbier, Bull. Soc. Chim. France 687 (1965).
- ¹²J. E. Dubois, J. Toullec et G. Barbier, Tetrahedron. Letters 4485 (1970).
- ¹³G. Charlot et B. Tremillon, Electrochimie dans les Solvants Non Aqueux, p. 304. Gauthiers Villars, Paris (1963). ^{14A}J. C. Jacquesy, R. Jacquesy et J. Levisalles, Bull. Soc. Chim.
- France 1545 (1965); bR. Jacquesy et J. Levisalles, Ibid. 1884 (1966).
- ¹⁵L. Mamlok et J. Jacques, Bull. Soc. Chim. France 484 (1960).
- ¹⁶C. Djerassi, P. A. Hart et C. Beard, J. Am. Chem. Soc. 86, 85 (1964).
- ¹⁷F. Garnier et J. E. Dubois, Chem. Comm. 241 (1968); Bull. Soc. Chim. France 3797 (1968). ^{18a}H. L. Herzog, M. A. Jevnik, M. E. Tully et E. B. Hershberg, J.
- Am. Chem. Soc., 75, 4425 (1953); ^b J. Levisalles, G. Teutsch et I. Tkatchenko, Bull. Soc. Chim. France 3194 (1969).
- ¹⁹M. Gaudry et A. Marquet, Bull. Soc. Chim. France 4169 et 4178 (1969); F. Effenderger, Angew. Chem. Int. Ed. 295 (1969).
- ²⁰G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).
- ²¹W. Walisch et J. E. Dubois, Chem. Ber. 92, 1028 (1959).
- ²²K. Yates et W. V. Wright, Can. J. Chem. 41, 2882 (1963); J. E. Dubois et C. Garnier, Bull. Soc. Chim. France 4512 (1967); J. E. Dubois et Bienvenue-Goetz, Ibid, 2086 et 2094 (1968); J. J. Aaron et J. E. Dubois, Ibid, 603 (1971).
- ²³J. E. Dubois et H. Herzog, Bull. Soc. Chim. France 57 (1963).
- ²⁴D. H. R. Barton et R. C. Cookson, Quart. Rev. 10, 44 (1956).
- ²⁵A. Fürst et P. A. Plattner, Helv. Chim. Acta 32, 275 (1949); A. Fürst et R. Scotoni, Ibid 36, 1332 et 1410 (1953); J. Schmidlin et A. Wettstein, Ibid 36, 1241 (1953).
- ²⁶J. Levisalles, Bull. Soc. Chim. France 551 (1960).
- ²⁷Voir par example C. Agami, Bull. Soc. Chim. France 869 (1974) pour la discussion de l'effet des groupes alkyles sur les acidités

en phase gazeuse; et L. Libbit et R. Hofmann, J. Am. Chem. Soc. 96, 1370 (1974) pour la discussion théorique de l'effet du

- groupe méthyle. ²⁶D. S. Bailey, J. A. Walder et J. B. Lambert, J. Am. Chem. Soc. 94, 177 (1972).
- ²⁹E. L. Eliel, N. L. Allinger, S. J. Angyal et G. Morrison, Conformational Analysis, p. 465. Wiley-Interscience, New York (1965).
- ³⁰L. Pauling, The Nature of Chemical Bond, 3rd Edn, p. 260. Cornell University Press, Ithaca, (1960).
- ³¹M. G. Rossmann et W. M. Lipscomb, Tetrahedron 4, 275 (1958).
- ³²W. G. Dauben, R. A. Micheli et J. F. Eastham, J. Am. Chem. Soc. 74 3852 (1952)
- ³³A. Abad et J. Levisalles, Bull. Soc. Chim. France 1236 (1969).
- ³⁴M. Bettahar et M. Charpentier Morize, Chem. Comm. 629 (1970). Tetrahedron 30, 1373 (1974); 32, 835 (1976).
- ³³L. P. Hammett, Physical Organic Chemistry, p. 184 et seq. McGraw-Hill, New York (1940).
- ³⁶E. Bienvenue-Goetz et J. E. Dubois, Tetrahedron 34, 2021 (1978); J. Am. Chem. Soc. 103, 5388 (1981).
- par ex. C. W. Shoppee, R. H. Jenkins et G. H. R. Summers, J. Chem. Soc. 1657 (1958); C. Djerassi, N. Finch, R. C. Cookson et C. W. Bird, J. Am. Chem. Soc. 82, 5488 (1960); E. W. Warnhoff. J. Org. Chem. 28, 887 (1963).

ANNEXE

Calcul de la variation de kexp avec [Br]

Le schéma (6) peut être utilisé en faisant les hypothèses que la concentration de l'ion intermédiaire I⁺ est stationnaire, et que la concentration de I⁺ Br₃⁻ est négligeable devant I⁺ Br⁻ (ce qui est justifié car la concentration initiale en brome est de l'ordre de 10⁻⁴M).

$$\begin{aligned} &k_1(1)[Br_2] + k_2(1)[Br_3^-] \\ &= k_{-1}[1^+Br^-] + k_{-2}[1^+Br^-][Br^-] \\ &+ k_3[1^+Br^-] + k_4[1^+Br^-][Br^-] \\ &[1^+Br^-] = \frac{k_1[Br_2] + k_2[Br_3^-][1]}{k_{-1} + k_3 + (k_{-2} + k_4)[Br^-]} \end{aligned}$$

comme v =
$$(k_3 + k_4[Br^-])[I^+Br^-]$$

et que K = $\frac{[Br_3^-]}{[Br_2][Br^-]}$

on en tire v = $\frac{k_3 + k_4[Br^-](k_1 + k_2K[Br^-])[Br_2][1]}{k_1 + k_2K[Br^-]}$ $\mathbf{k}_{-1} + \mathbf{k}_3 + (\mathbf{k}_{-2} + \mathbf{k}_4)[\mathbf{Br}^-]$ comme on a aussi

 $v = k_{exp}[Br_2 + Br_3][1] = k_{exp}(1 + K[Br])[Br_2][1]$

On obtient

$$\mathbf{k}_{exp}(1 + K[Br^{-}]) = \frac{(\mathbf{k}_3 + \mathbf{k}_4[Br^{-}])(\mathbf{k}_1 + \mathbf{k}_2K[Br^{-}])}{\mathbf{k}_{-1} + \mathbf{k}_3 + \mathbf{k}_{-2} + \mathbf{k}_4)[Br^{-}]}$$

qui est bien de la forme
$$\frac{a[Br]^{+}+b[Br]+c}{(1+d)[Br]}$$

Le calcul sur ordinateur conduit à $a = 4.759 \times 10^6$, $b = 2.465 \times 10^6$, $c = 7.739 \times 10^4$, d = 200/3. Le coefficient de correlation $p = \Sigma[(k \text{ calc} - k \text{ mes})/(k \text{ mes})]^2$ est égal à 0.023. La courbe représentative de kexp est indique sur la Fig. 2.